

Legal Statement

 This document remains the property of the Met Office and must not be disclosed, shared or disseminated to unauthorised persons without the prior written permission of the Head of the Met Office College.

www.metoffice.gov.ul

© Crown Copyright 2018, Met Office

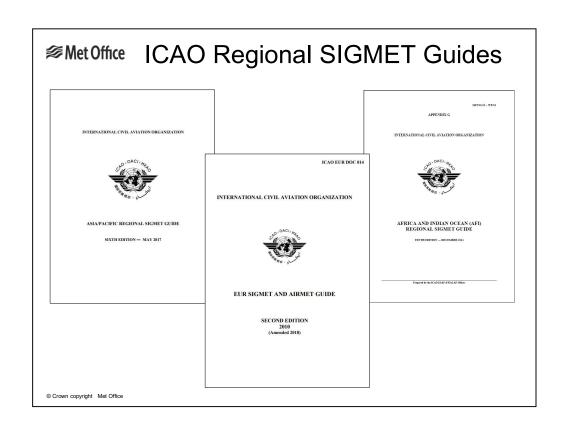
Hello, and welcome to the session on SIGMETS. This is part 1, an introduction to SIGMETs and coding. Part 2 and 3 will look more closely at forecasting SIGMETs for Turbulence and Convection.

Aim

 To introduce you to the code used to warn of significant enroute weather.

Learning Outcomes

By the end of this session, you should be able to...


- Discuss the purpose of the SIGMET system.
- Recognise key components of the coded SIGMET message.

www.metoffice.gov.uk

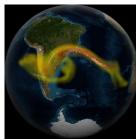
© Crown Copyright 2018, Met Office

The aim of this session is to introduce you to the coding used to warn of significant en-route weather.

By the end of this session, you should be able to discuss the purpose of issuing SIGMETs and recognise key components of the coded SIGMET message.

For further information on SIGMETs I would suggest having a look at your ICAO regional SIGMET guide.

WMO AMF Competencies


This lesson addresses the following knowledge requirements as listed in the CAeM AMF competency document (see "WMO and Aviation Competencies".

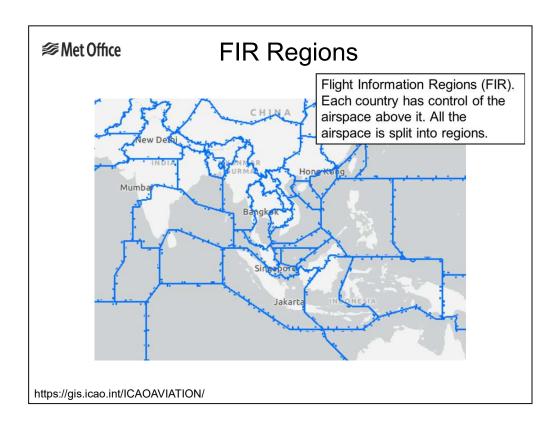
27. ICAO, WMO and national aeronautical meteorological codes and forms of data representation

Knowledge of ICAO, WMO and national aeronautical meteorological codes and forms of data representation is vital to be WMO AMF compliant.

SIGMETs

- SIGnificant METeorological information
- Warnings to aircraft in flight, and on the ground, of specified meteorological conditions
- Cover Flight Information Regions (FIR's)
- Originated by a Met Watch Office (MWO)
- Issued for short periods
 - maximum validity is 4 hours
 - except Volcanic Ash (and Tropical Cyclone)
 where the period of validity may be extended up to 6 hours
 - lead time of 1 hour has been agreed as best practice
- · Passed to pilots about to depart or in flight

So what is a SIGMET? SIGMET stands for Significant Meteorological information and provides warnings to aircraft in flight, or on the ground of any specified meteorological conditions.


They cover flight information regions, also know as F I R's and are produced by a Met Watch Office (MWO).

They have short validity periods of 4 hours, except for Volcanic ash and Tropical cyclones where the validity can be up to 6 hours.

Best practice states that a lead time of 1 hour is desirable, however if a specified meteorological condition is observed then a SIGMET should be issued

as soon as possible.

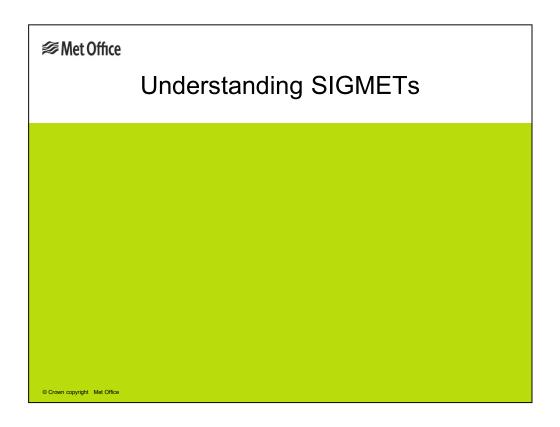
The SIGMET is then passed on to pilots about to depart, or already in flight for them to make informed decisions.

Each county has control of the airspace above it. All airspace is split into areas known as Flight Information regions. Some countries can further split up a FIR into upper information regions. Smaller countries may only have 1 FIR, whilst larger countries may have several.

SIGMETS

- There are 3 types of SIGMETS:
 - · WS/WV/WC
- Issued in a sequential daily numbering system. i.e. the first SIGMET of the day in each FIR will be numbered '01', then '02'
- VA SIGMETs have an independent numbering system to all other SIGMETs and should therefore be treated separately
 - This applies also for VA cancellation messages
- · Not amended
 - If they are incorrect they are cancelled and the correct version transmitted as a new SIGMET.
- The cancelled SIGMET should be numbered according to the normal sequential daily numbering system.

There are 3 types of SIGMETs, normal (WS), Volcanic (WV) and Tropical Cyclone (WC). They are issued in a sequential daily numbering system, which means that every day will reset back to 1. Volcanic ash SIGMETs have an independent numbering system and therefore should be treated differently.


SIGMETs are non-amendable. If there is an error in the SIGMET it will need to be cancelled and a new SIGMET issued.

Responsibilities

- MWO: Timely issue to warn of unexpected or severe weather phenomena within FIR
- ATS: Close co-ordination shall be established with the MWO
 - receipt without delay and display SIGMETs issued by associated MWO
 - transmission without delay of special air-reports received through voice communication to the associated MWO
- **Pilots**: Timely issuance of SIGMET information is dependent on the receipt by MWOs of special air-reports.
 - It is essential that pilots transmit reports to ATS units whenever specific en-route conditions are encountered or observed.

It is the responsibility of the Met Watch Office to timely issue SIGMETs to warn of unexpected or severe weather phenomena withing a FIR.

The met watch office will have close co-ordination with the Air Traffic Service, who will transmit and display SIGMETs to pilots. Air Traffic Services are also responsible for relaying any special air-reports received from pilots to the Met Watch Office. Pilots are responsible tor transmitting reports of any specific onroute conditions that have been encountered or observed.

The next part of this session is going to have a look at SIGMET structure and coding.

SIGMET structure

Three parts:

WMO header

WSUK31 EGRR 092158

First line of SIGMET indicating validity period
 EGTT SIGMET 06 VALID 092300/100300 EGRR-

- Meteorological description
- EGTT LONDON FIR SEV MTW FCST E OF W00530 FL050/250 STNR NC=

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

SIGMETs can easily be split into three parts,

The WMO header,

The first line of the SIGMET which provides information on the Validity period

And the Meteorological description which provides information on the hazards, its location and movement.

SIGMET structure WMO header

WSUK31 EGRR 092158

- Data type designator
 WS for SIGMET
 WC for SIGMET for tropical cyclone (not required in the EUR Region)
 WV for SIGMET for volcanic ash

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

Lets start with looking at the WMO header.

The first two letters indicate what type of SIGMET it is. WS is used for normal SIGMETs on Turbulence, Thunderstorms etc. WC is used for Tropical Cyclones and WV is used for Volcanic ash.

SIGMET structure WMO header

WSUK31 EGRR 092158

• Country or territory designator

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The next two letters indicate the country or territory. In the example it is the UK. For Singapore it would be SR.

SIGMET structure WMO header

WSUK31 EGRR 092158

· Bulletin number

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The next two number are the Bulletin number. Again this changes depending on country. In the UK the bulletin number is 31. Singapore has the bulletin number 20

SIGMET structure WMO header

WSUK31 **EGRR** 092158

• ICAO of the Disseminating Centre(could be the same as the MWO)

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The next part of the WMO header is the ICAO of the Disseminating centre. This could be the same as the MWO, particularly in smaller countries.

WSUK31 EGRR **092158**

• Date/time group

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The next part is the date and time group. With time being in Zulu/UTC.

EGTT SIGMET 06 VALID 092300/100300 EGRR-

 ICAO location indicator of the ATS unit serving the FIR or CTA to which the SIGMET refers

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

Now we move onto the second part of the SIGMET structure, which is what we call 'The first line of SIGMET'.

The first part is the ICAO location indicator of the Air Traffic Service which is responsible for the Flight Information Region or Control Area for which the SIGMET refers to.

EGTT **SIGMET** 06 VALID 092300/100300 EGRR-

· Message identifier

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

Next is the message identifier, which is SIGMET

EGTT SIGMET 06 VALID 092300/100300 EGRR-

- · Daily sequence number
- Can consist of up to 3 symbols: 1, 2
 01, 02
 A01, A02
- Cancellations of SIGMETS will have a new sequence number

www.metoffice.gov.uk © Crown Copyright 2018, Met Office

This is then followed by the daily sequence number. SIGMETs are reset everyday at midnight. The SIGMET number can consist of up to 3 symbols, either 1,2,3 etc or could be 01, 02, 03. It is also possible to use letters as well, so A01, A02 etc. When cancelling a SIGMET you would give it the next number in the sequence. For example you have issued 3 SIGMETs and are wanting to cancel one, the SIGMET number would be 4.

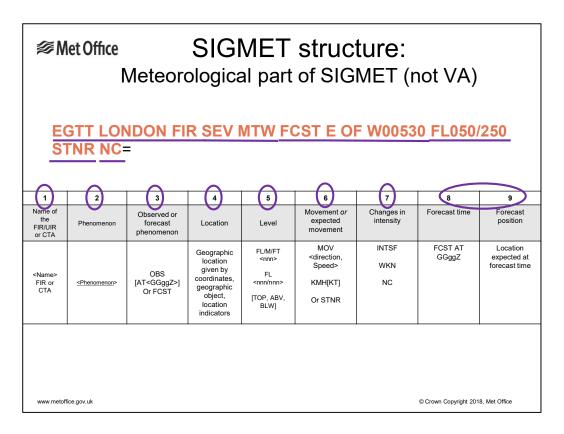
EGTT SIGMET 06 VALID 092300/100300 EGRR-

 Validity period of the SIGMET given by date/time group of the beginning and date/time group of the end of the period

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The next part of the SIGMET is the validity period given by a date and time group and the beginning and end. So in this example the SIGMET is valid from 2300 on the 9th until 03000 on the 10th.


EGTT SIGMET 06 VALID 092300/100300 EGRR-

 ICAO location indicator of the MWO originating the message and – (hyphen, without space, to separate the preamble from the text)

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The last part of the SIGMET first line is the ICAO location indicator of the Met Watch Office originating the message. And is then followed by a hyphen without a space. This helps to break up the header and first line to the Meteorological part of the SIGMET.

Now we move onto the meterological part of the SIGMET. This can easily be broken down further.

The first part is the ICAO location indicator and full name of Flight Information Region. EGTT is the ICAO and London FIR is the name.

Next identifies which hazard the SIGMET is in reference to. There are specified phenomena which are allowed to be reported on a SIGMET. Only 1 weather hazard is allowed per SIGMET. For example if in an area you are expecting Heavy Sandstorms and severe mountain waves, two SIGMETs should be issued.

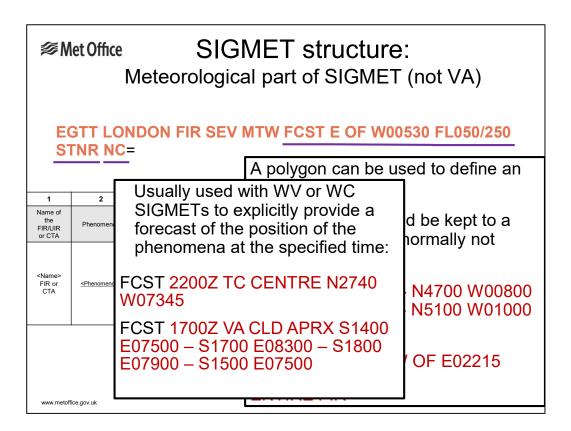
	enomena	≫ Met Office	
	S	Provision of 'Smoke' SIGMETs	
		Background The phenomenon that UK airspace experienced on 16 th October 2017, during which smoke from forest fires on the Iberian Peninsula were drawn up into UK airspace, impacted the operation of several airorast.	
SEV ICE	Severe Icing -	Consequently, and following discussions with the Civil Aviation Authority, the Met Office have commenced the provision of 'Smoke SIGMETs' to provide timely information on this potential	
SEV TURB	Severe Turbule	commenced the provision of Smoke Stowe Is to provide timely information on this potential hazard to aviators in the event of a widespread smoke event.	
SEV ICE (FZRA)	Severe Icing ca	Principles for issuing Smoke SIGMETs The following principles for the provision of smoke SIGMETs have been agreed with the CAA:	
SEV MTW	Severe Mounta	 Smoke SIGMETs will be produced upon confirmed reports from at least 2 aircraft within a similar area 	
HVY DS	Heavy Duststor	 These aircraft reports should contain evidence to support the presence of natural combustible material in the atmosphere Smoke SIGMETs will have a validity period not exceeding 4 hours, in common with 	
HVY SS	Heavy Sandsto	SIGMETs issued for most other phenomena Smoke SIGMETs may be defined as a bounded area or entire FIR as appropriate	
RDOACT CLD	Radioactive Clc	 The flight levels stated in smoke SIGMET will normally reflect the heights reported by aircraft +- 2000h. For example, if smoke is reported at FL100, the SIGMET would reflect a height range of FL080/120. 	
VA ERUPTION	Volcanic Erupti	 Reference to movement/expected movement may be reported in smoke SIGMETs Changes of the intensity of smoke will not be forecast 	
VA CLD	Volcanic Cloud	Example Example of a Smoke SIGMET, based on the above principles:	
TC [name]	Tropical Cyclon	Example WSUK33 EGRR 100750	
FU	Smoke	EGPX. SIGMET 04 VALID 100800/101000 EGRR. EGPX. SCOTTISH FIR FU OBS WIN N8130 E00250 — N8055 E00350 — N8050 E00250 — N8130 E00250 FL080/120 MOV E 20KT NC=	
		FitzRoy Road, Exeler, Devon, EX1 3PB United Kingdom transcontineatorities covus www.majerice.covus	
www.metoffice.gov.uk	•	© Crown Copyright 2018, Met Office	

You can have severe icing and turbulence that is not associated with convective clouds, severe icing caused by freezing rain, and severe mountain waves, which in the UK is classified as anything above 600 Feet per Minute. Heavy Dust and Sandstorms, Radioactive Cloud. Volcanic eruptions and clouds would come under a WV SIGMET and Tropical cyclone would be a WC SIGMET. In response to European forest fires in 2017 the CAA has agreed that a smoke SIGMET can be produced if two or more aircraft report the phenomena within a similar area. This is currently being issued by the UK met office, however might not be a wider agreement. The other phenomena to be reported in SIGMETs is thunderstorms.

Met Office	Thunderstorm phenomena to be reported by SIGMET
OBSC TS	Obscured thunderstorm(s) by haze or smoke or cannot be readily seen due to darkness
EMBD TS	Embedded thunderstorm(s) within cloud layers and cannot be readily recognised
FRQ TS	Frequent thunderstorm(s)- area of thunderstorms within which there is little or no separation between adjacent thunderstorms with a maximum spatial coverage >75% of the area affected
SQL TS	Squall line thunderstorm(s) indicates thunderstorms along a line with little or no space between individual clouds
OBSC TSGR	Obscured thunderstorm(s) with hail
EMBD TSGR	Embedded thunderstorm(s) with hail
FRQ TSGR	Frequent thunderstorm(s) with hail
SQL TSGR	Squall line thunderstorm(s) with hail

A SIGMET is not issued for an isolated thunderstorm which can be easily seen by a pilot. If a thunderstorm SIGMET is issued no mention, nor issue of severe icing or severe turbulence is necessary because these are implicit. Several identifiers can be used with Thunderstorms to further describe the hazard.

Obscured means it can not be readily seen due to haze, smoke or darkness.


Embedded means it is within a layer of cloud and therefore cannot be easily recognised.

Frequent thunderstorms, of which there is little separation and cover over 75% of an area.

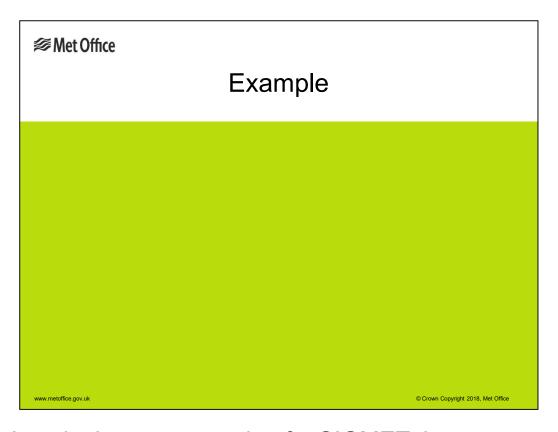
Squall line thunderstorms are used to describe a line of thunderstorms where there is little to no spacing between the clouds. This would make passing through the line difficult.

The same identifiers can be issued when thunderstorms occur with or without hail. If hail is present TSGR would be used.

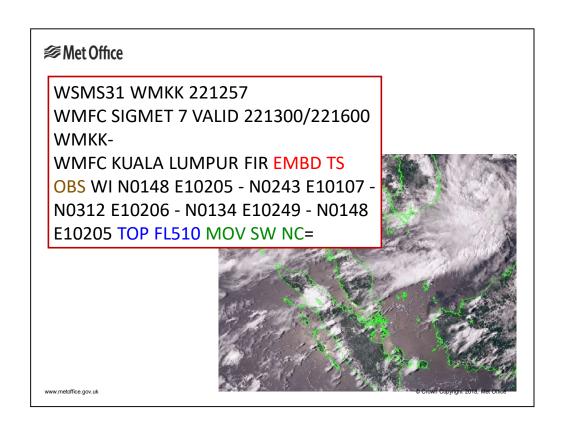
If more than one thunderstorm condition is expected to occur simultaneously, then the following order should be adopted: Squall trumps frequent which trumps Embedded which trumps obscured.

The next section tells us if the phenomenon is either forecast to occur or has already been observed and is expected to continue to occur. A time of observation can also be included. For example, Observed at 1245Z.

Next we have the location of the hazardous area. This can be done in several ways. A polygon can be used to define an area within the FIR and is usually with the abbreviation WI which stands for Within. When selecting points it should go in an clockwise direction in order to make interpretation by the pilot easier. Turning points of the polygon should be kept to a minimum, and should generally not exceed seven. Location can also be described by a direction from a given line or point,

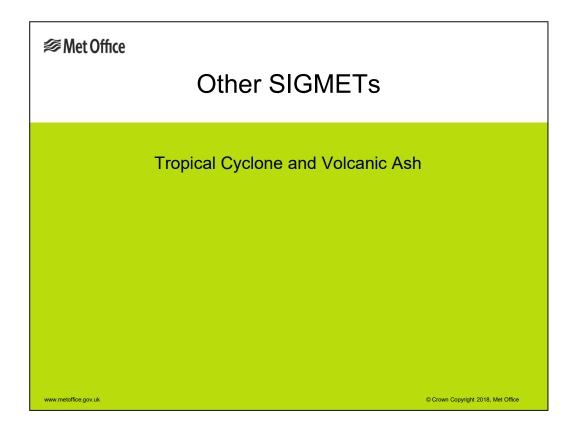

Eg, South of line x. Or as a single point, or a radius from a single point. The later usually refers to cyclones or volcanic ash, where the hazard has a centre. Location can also refer to the entire FIR.

The next part indicates at what level the hazard is at. This can be expressed as either a Flight level, in feet or in meters. It can be at one particular height, between two height levels or Above/ below a point. Or the Top of the phenomena might just be reported.


Next we have movement or expected movement with a direction and speed. Speed can either be in KMH or KT. STNR is used if the phenomena is stationary.

The next part is any changes in intensity. Here you can have INTSF for Intensifying, WKN for weakening and NC for no change.

The next two parts are an outlook beyond the valid time and is used for cyclone and volcanic ash SIGMETs only. Used to describe the forecast position of the cyclone or ash centre at a given time. For example: forecast at 2200Z the Tropical Cyclone centre will be N27,40 and W073,45. Can be used instead of movement, but can be used together as well.



Lets look at an example of a SIGMET then.

So this is a normal SIGMET (WS) produced by Malaysia (MS), with bulletin number 31. ICAO disseminating centre is Kuala Lumpur International Airport. The date is 22nd and the time of issue is 1257 Zulu. The ICAO of the air traffic service is WMFC. The message is a Sigmet and is number 7 for the day. Validity of the SIGMET is between 1300 and 1600 on the 22nd. The ICAO and name of the FIR the Sigmet is in reference to is WMFC Kuala Lumper FIR. The phenomenon is Embedded thunderstorms. Therefore we know that thunderstorms are within cloud and can not be readily seen. The phenomenon has been observed. The location of the thunderstorms are within the following grid points. Thunderstorms are expected up until flight level 510, and are moving south

westwards with no change in intensity.

The example we just looked at was for a WS SIGMET. However there are also specific Tropical Cyclone and Volcanic Ash SIGMETs. Going to have a quick look at the difference with these.

Tropical Cyclone Advisory Centre (TCAC)

Provides advisory information to Met Watch Offices about observed or forecast Cyclone activity. Includes info on:

- Position and depth of TC centre
- Movement
- Maximum surface winds

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

A Tropical Cyclone Advisory Centre provides information to Met Watch Offices about any observed or forecast cyclone activity. They provide position, depth, movement and wind speed information. This information can then be used to produce a SIGMET.

Tropical Cyclone SIGMETS

WC(Header)

(First line of SIGMET)

FIR NAME TC <NAME> PSN <Position> CB OBS/FCS [At TTttZ] <Location> <Level> <Movement or expected Movement> <Changes in Intensity> <Forecast time and position> <Repetition of elements>=

WCJP31 RJTD 170710

RJJJ SIGMET B02 VALID 170710/171310 RJTD-

RJJJ FUKUOKA FIR TC CHANTHU PSN N3330 E12910 CB OBS AT 0600Z WI N3250 E12910 - N3415 E12910 - N3450 E12955 - N3450 E13100 - N3335 E13135 - N3250 E12910 TOP FL540 WKN FCST AT 1200Z TC CENTRE PSN N3340 E13120=

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

The structure of Tropical cyclone SIGMETs are not very different to normal SIGMETs and they use the same numbering system. The difference being that you include TC name and position. So in the example below the Tropical Cylclone is Chanthu (Chan-to) and is located at North 33,30 and East 129,10. The structure there on is the same as a normal SIGMET. No movements or expected movement is given as forecast time and position is used instead. Repetition of elements is used when two tropical cyclones occur simultaneously in an FIR. The descriptor AND is used to separate the elements for each tropical cyclone. The same goes for Volcanic ash sigmets with more than one ash cloud in a FIR.

If a Tropical Cyclone is observed a SIGMET should be issued immediately. If a Tropical Cyclone is forecast to enter or develop in a FIR then a SIGMET can be issued up to 12 hours before.

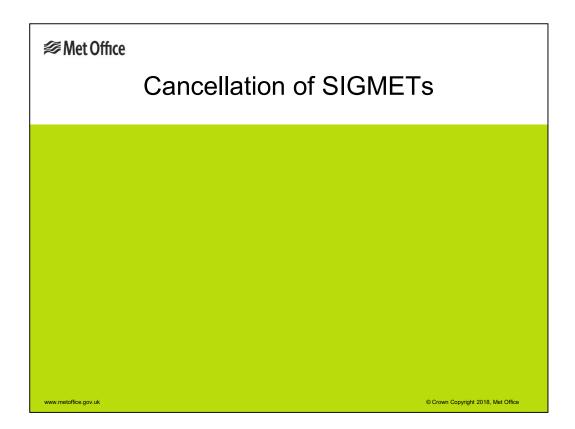
Met Office Volcanic Ash (WV) SIGMETs Source of Information				
VAAC	Advice that ash is observed or is expected to enter the MWO's FIR at a specific time in the future.	Issue immediately		
Volcano Observatory	Details of an eruption with either no information about any ash or the extent of any ash cloud. These may be received in the form of a Volcano Observatory Notice for Aviation (VONA).	Issue immediately		
Pilot Report, Met Office, ATS Unit	Report of an eruption with or without associated ash, or an ash encounter without any reference to a specific volcano. Note: All reports should be forwarded on to the responsible VAAC without delay.	Issue immediately, even if no information received from a VAAC		

There are 9 Volcanic Ash Advisory Centers that provide information on observed or expected ash in an area. Information can also come from volcano observatories and pilot reports. SIGMETs need to be issued immediately at any report of volcanic ash. Again the structure of the SIGMET is very similar, however it has its own number system. Just like the Tropical Cyclone SIGMETs the Name and position of the Volcanic eruption is given. In the example below the Volcano was MT La PALMA in the Canarias. Again a forecast time and position is given, but is also used in conjunction with a movement.

WV(Header)

(First line of SIGMET)

FIR NAME VA ERUPTION MT <NAME> PSN <Position> VA CLD OBS/FCS [At TTttZ] <Location> <Level> <Movement or expected Movement> <Changes in Intensity> <Forecast time and position> <Repetition of elements>=


WVCR31 LEMM 200400

GCCC SIGMET 2 VALID 200400/201200 GCGC-

GCCC CANARIAS FIR/UIR VA ERUPTION MT LA PALMA PSN N2834 W01749 VA CLD OBS AT 0300Z N2836 W01751 - N2825 W017 - N28 W017 - N28 W01720 FL100/ABV150 MOV SE 10KT FCST AT 0300Z N2836 W01751 - N2825 W01715 - N28 W01640 - N28 W01720 W01740 FL100/ABV150=

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

SIGMET Cancellation

- Required if phenomenon for which the SIGMET had been issued is no longer occurring or no longer expected
- Cancellation is done by the issuing MWO

Example:

SIGMET starting with:

WSUK31 EGRR 040815

EGTT SIGMET 01 VALID 041015/041415 EGRR-

EGTT LONDON FIR ...

Cancellation of above SIGMET:

WSUK31 EGRR 041330

EGTT SIGMET 02 VALID 041330/041415 EGRR-

EGTT LONDON FIR CNL SIGMET 01 041015/041415=

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

SIGMETs are cancelled if the phenomenon is no longer occurring or expected or if an amendment is needed. As SIGMETS aren't amendable, you would need to cancel the original message, and then issue a new SIGMET. The cancellation is done by the issuing MWO.

Lets talk through an example of cancelling the following SIGMET. So this was issued on the 4th at 0815 with the validity being between 1015 and 1415. For whatever reason we need to cancel the SIGMET. The header will be the same, with the current time included. So at 1330. For the first line of the SIGMET we will include the next

number in the daily sequence. For this example it is 02. The validity is from the time of issue (1330) until the original end of the SIGMET. In the main body of the SIGMET we will again state the ICAO and name of the FIR and then will be followed with: CNL (for cancel) SIGMET, and then state the SIGMET you want to cancel and its validity. So we want to cancel SIGMET 01 which was valid between 041015/041415.

Conclusions

You should now be able to:

- · Discuss the purpose of the SIGMET system.
- · Recognise key components of the coded SIGMET message.

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

We have now gone over the basic coding of SIGMETs. There may be some variations depending on countries and agreements made on specific phenomena. It is important that SIGMETs are issued promptly and accurately to enable pilots to make informed decisions. For more in depth coding of SIGMETs please look at your ICAO regional SIGMET guides.

This is now the end of the seminar introduction into SIGMETs. Please now watch the further Seminars on Turbulence forecasting for SIGMETs, and Thunderstorm forecasting for SIGMETs. Thank you for watching, and any questions you have on this topic we will happily answer at the live Q&A session.